# Learning Sample-Aware Threshold for Semi-Supervised Learning



Qi Wei, Lei Feng, Haoliang Sun, Ren Wang, Rundong He, Yilong Yin Shandong University, Nanyang Technological University *Contact: 1998v7@qmail.com* 

Machine Learning Journal **ACML 2023** 

# Contributions

> A simple yet effective training framework called Meta-Threshold (Meta-T), which

- does not leverage prior knowledge to preset adjust function for thresholds  $\bullet$
- contains one hyperparameter, thus does not require complex cross-validation.
- $\succ$  Theoretically provide the convergence of Meta-T which enjoys a rate of  $\mathcal{O}(1/\epsilon^2)$ .
- Meta-T be applied to solve both the conventional and imbalanced SSL tasks.

# **Motivation and Framework**



#### Learning algorithm

Algorithm 1 Learning algorithm of Meta-T. **Require:** Unlabeled/labeled data  $D^u/D^l$ , batch size n, a coefficient  $\mu$ , max iterations T. **Ensure:** Classifier network parameter  $\mathbf{w}^{(T)}$ . 1: Initialize  $\mathbf{w}^{(0)}$  for classifier network and  $\Theta^{(0)}$  for TGN. 2: for t = 0 to T - 1 do Random sample  $\{(\mathbf{x}_1^l, \mathbf{y}_1^l), ..., (\mathbf{x}_n^l, \mathbf{y}_n^l)\}$  from  $D^l$  and  $\{\mathbf{x}_1, ..., \mathbf{x}_{(\mu \times n)}\}$  from  $D^u$ . Calculate  $\hat{\mathbf{w}}^{(t)}(\Theta)$ . ⊳ Eq. (6) Update  $\Theta^{(t+1)}$ . ⊳ Eq. (7) Update  $\mathbf{w}^{(t+1)}$ . ⊳ Eq. (8) 7: end for

# Experiments

UDA

 $\operatorname{PL}$ 

 $\operatorname{Dash}$ 

ReMixMatch

FixMatch

FlexMatch

Meta-T (ours)

**O** SOTA performance on eight test benchmarks (typical SSL)

(a) Motivation: deep models have different learning capabilities for different examples in class *tiger*. Intuitively, setting instance-level thresholds is more logical and beneficial to generate more accurate pseudo-labels for unlabeled instances, further facilitating deep model's learning.

(a) Review of the pseudo-labeling training framework: Meta-T designs a meta-net which dynamically generates a refined confidence threshold for unlabeled example.

# Methodology

### **Confidence Thresholds in Semi-Supervised Learning**

ation

average conf.

of class c

Structure

of TGN

|                                     | CIFAR             | R-10 (Wide                            | )                   | CIFAR-100 (Wide ResNet-28-8) |                      |                                                                                          |                        |                                    |
|-------------------------------------|-------------------|---------------------------------------|---------------------|------------------------------|----------------------|------------------------------------------------------------------------------------------|------------------------|------------------------------------|
| Methods                             | 40 labels         | 250  labe                             | els 4000 l          | abels                        | 400 lab              | els 2500                                                                                 | ) labels               | 10000 labels                       |
| П-Model                             | -                 | $54.26{\pm}3.$                        | .97 14.01=          | $\pm 0.38$                   | -                    | 57.2                                                                                     | $5{\pm}0.48$           | $37.88{\pm}0.11$                   |
| VAT                                 | $74.66 \pm 2.12$  | $41.03 \pm 1.03$                      | 79 10.51            | $\pm 0.12$                   | $85.20 \pm 1$        | .40 46.8                                                                                 | $4{\pm}0.79$           | $32.14{\pm}0.19$                   |
| MixMatch                            | $47.54{\pm}11.5$  | $0  11.05 \pm 0.0$                    | .86 $6.42\pm$       | $6.42{\pm}0.10$              |                      | .32 39.9                                                                                 | $4{\pm}0.37$           | $28.31{\pm}0.33$                   |
| UDA                                 | $29.05 \pm 5.93$  | $8.82 \pm 1.0$                        | $08 		4.88 \pm$     | $4.88{\pm}0.18$              |                      | .88 33.1                                                                                 | $3{\pm}0.22$           | $24.50{\pm}0.25$                   |
| CoMatch                             | $6.91{\pm}1.39$   | $4.91{\pm}0.3$                        | - 33                | -                            |                      |                                                                                          | -                      | -                                  |
| SimMatch                            | $5.60 \pm 1.37$   | $4.84{\pm}0.3$                        | 39 <b>3.96</b> ±    | 0.01                         | $37.81\pm 2$         | <u>.21</u> <b>25.0</b>                                                                   | $7{\pm}0.32$           | $\textbf{20.58}{\pm}\textbf{0.11}$ |
| Pseudo-labeling                     |                   | $49.78 {\pm} 0.$                      | 43 16.09=           | $\pm 0.28$                   | -                    | 57.3                                                                                     | $8{\pm}0.46$           | $36.21{\pm}0.19$                   |
| FixMatch                            | $11.39 \pm 3.37$  | $5.07 \pm 0.0$                        | $4.26 \pm$          | -0.05                        | $48.85 \pm 1$        | .75 28.2                                                                                 | $9{\pm}0.11$           | $22.60{\pm}0.12$                   |
| Dash                                | $9.16 \pm 4.31$   | $4.78{\pm}0.1$                        | 12                  | 0.06                         | $44.83 \pm 1$        | .36 27.1                                                                                 | $8 {\pm} 0.21$         | $21.97{\pm}0.14$                   |
| FlexMatch                           | $4.97 \pm 0.06$   | $4.98{\pm}0.0$                        | $09 		4.19 \pm$     | 0.01                         | $39.94{\pm}1$        | .62 26.4                                                                                 | $9{\pm}0.20$           | $21.90{\pm}0.15$                   |
| $\mathbf{Meta-T} \ (\mathbf{ours})$ | $4.39{\pm}0.28$   | <b>4.10</b> ±0.                       | <b>20</b> $4.01\pm$ | 0.09                         | $36.17{\pm}1$        | .40 $25.8$                                                                               | $1 \pm 0.72$           | $20.74 {\pm} 0.23$                 |
|                                     |                   |                                       |                     |                              |                      |                                                                                          |                        |                                    |
|                                     |                   | Top-1 / Top-5 accuracy (%) $\uparrow$ |                     |                              |                      |                                                                                          |                        |                                    |
|                                     | SVH               | N                                     | STL-10              | _                            |                      | 107                                                                                      | ImageNe                | et 100%                            |
| Methods                             | 40 labels         | 250 labels                            | 1000 labels         |                              | 1                    |                                                                                          | 10%                    | 100%                               |
| П-Model                             | -                 | $18.96 \pm 1.92$                      | $26.23 \pm 0.82$    | — Suj<br>Fix                 | p. baseline<br>Match | 25.4 / 48.4<br>53.4 / 74.4                                                               | 56.4 / 80<br>70.8 / 89 | .4                                 |
| VAT                                 | $74.75{\pm}3.38$  | $4.33 \pm 0.12$                       | $37.95 \pm 1.12$    | Co                           | Match                | 66.0 / 86.4                                                                              | 73.6 / 91              | .6 80.4 / 94.6                     |
| MixMatch                            | $42.55{\pm}14.53$ | $3.98{\pm}0.23$                       | $10.41{\pm}0.61$    |                              | nMatch               | $\frac{67.2 \ / \ 87.1}{67.2 \ / \ 87.1} \qquad \frac{74.4 \ / \ 91.6}{74.2 \ / \ 91.6}$ |                        | .6                                 |
|                                     | FO CO LOO F1      |                                       | T CC LO FC          | IVI                          | eta-T (ours)         | 07.7 / 87.9                                                                              | 75.0 / 91              | L•7                                |

 $7.66 {\pm} 0.56$ 

 $5.23 {\pm} 0.45$ 

 $27.99 {\pm} 0.83$ 

 $5.17 {\pm} 0.63$ 

 $3.96{\pm}0.25$ 

 $5.77 {\pm} 0.18$ 

 $3.51{\pm}0.34$ 

UAD

FixMatch

FlexMatch

SoftMatch

Meta-T(ours)

#### **O** SOTA performance on imbalanced SSL task

 $5.69 {\pm} 2.76$ 

 $2.92{\pm}0.48$ 

 $20.21{\pm}1.09$ 

 $2.64{\pm}0.64$ 

 $2.17{\pm}0.10$ 

 $2.29{\pm}0.51$ 

 $52.63 \pm 20.51$ 

 $3.34{\pm}0.20$ 

 $3.14{\pm}1.60$ 

 $3.03{\pm}1.59$ 

 $8.19 {\pm} 3.20$ 

 $\textbf{2.89}{\pm}\textbf{0.92}$ 

|                                     | $ $ $N_1$                          | $= 1500, M_1 = 3$                  | 000                                | $N_1 = 500, M_1 = 4000$            |                                    |                    |  |
|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------|--|
| Methods                             | $\gamma = 50$                      | $\gamma = 100$                     | $\gamma = 150$                     | $\gamma = 50$                      | $\gamma = 100$                     | $\gamma = 150$     |  |
| Supervised                          | $65.23{\pm}0.05$                   | $58.94{\pm}0.13$                   | $55.63{\pm}0.38$                   | $51.31{\pm}0.34$                   | $45.82{\pm}0.41$                   | $40.90{\pm}0.39$   |  |
| m cRT                               | $67.82{\pm}0.14$                   | $63.43 {\pm} 0.45$                 | $59.56{\pm}0.44$                   | $56.28{\pm}1.45$                   | $48.11 {\pm} 0.79$                 | $45.02{\pm}1.08$   |  |
| LDAM                                | $68.91 {\pm} 0.10$                 | $63.15 {\pm} 0.24$                 | $58.68{\pm}0.30$                   | $56.41 {\pm} 0.92$                 | $49.27{\pm}0.88$                   | $45.10{\pm}0.75$   |  |
| MixMatch                            | $73.59{\pm}0.46$                   | $65.03 {\pm} 0.26$                 | $62.71 {\pm} 0.29$                 | $65.32{\pm}1.20$                   | $56.41{\pm}1.96$                   | $52.38{\pm}1.88$   |  |
| ReMixMatch                          | $78.96{\pm}0.29$                   | $72.88{\pm}0.12$                   | $68.61 {\pm} 0.40$                 | $76.83{\pm}0.98$                   | $70.12{\pm}1.23$                   | $59.58{\pm}1.30$   |  |
| DARP                                | $81.60 {\pm} 0.31$                 | $75.23{\pm}0.14$                   | $69.31 {\pm} 0.26$                 | $76.72{\pm}0.46$                   | $69.41 {\pm} 0.50$                 | $61.23{\pm}0.31$   |  |
| $\operatorname{CReST}$              | $82.03{\pm}0.26$                   | $75.08{\pm}0.41$                   | $69.84{\pm}0.39$                   | $76.18{\pm}0.36$                   | $69.50 {\pm} 0.70$                 | $60.81{\pm}0.55$   |  |
| Adsh                                | $83.38{\pm}0.06$                   | $76.52{\pm}0.35$                   | $71.49{\pm}0.30$                   | $\textbf{79.27}{\pm}\textbf{0.38}$ | $70.97{\pm}0.46$                   | $62.04{\pm}0.51$   |  |
| FixMatch                            | $79.10{\pm}0.14$                   | $71.50{\pm}0.31$                   | $68.47 {\pm} 0.15$                 | $77.34{\pm}0.96$                   | $68.45{\pm}0.94$                   | $60.10{\pm}0.82$   |  |
| $\operatorname{Dash}$               | $81.93{\pm}0.10$                   | $74.62{\pm}0.26$                   | $\underline{72.29{\pm}0.42}$       | $77.90{\pm}0.39$                   | $70.41{\pm}0.27$                   | $62.11 {\pm} 0.32$ |  |
| $\operatorname{FlexMatch}$          | $82.86{\pm}0.25$                   | $75.47{\pm}0.41$                   | $70.62{\pm}0.30$                   | $\underline{78.69 {\pm} 0.50}$     | $71.80{\pm}0.29$                   | $62.85 {\pm} 0.39$ |  |
| $\mathbf{Meta-T} \ (\mathbf{ours})$ | $\textbf{83.94}{\pm}\textbf{0.12}$ | $\textbf{77.80}{\pm}\textbf{0.39}$ | $\textbf{73.07}{\pm}\textbf{0.58}$ | $78.41 {\pm} 0.22$                 | $\textbf{72.40}{\pm}\textbf{0.42}$ | $64.46{\pm}0.60$   |  |

Given an unlabeled data 
$$x_m$$
, the training objective is  
 $\ell_{x_m} = 1(\max(f(A^{\omega}(x_m); w)) > \tau) \cdot H(\hat{y}_m, f(A^s(x_m); w))$   
 $H$  loss function  
 $\tau$  confidence threshold  
The training objective in Meta-T is  
 $\ell_{x_m} = 1(\max(f(A^{\omega}(x_m); w)) > \tau_m) \cdot H(\hat{y}_m, f(A^s(x_m); w))$   
Sample-level threshold is produced by a meta-net  $\tau_m = V_m(w, \Theta)$ 

### Threshold Generated Network (TGN)

At epoch t, the generated threshold for  $x_m$  is

$$\tau_m^t = V(g(f(\mathbf{x}_m; \boldsymbol{w})), \overline{P}_c^t; \Theta)$$

#### Bi-level optimization

**Optimal parameters** of two networks can be obtained by minimizing the loss:

### **D** Effectiveness analysis







Error rates (%)  $\downarrow$ 

Amazon-5

 $50.29 \pm 4.6$ 

 $42.70 \pm 0.53$ 

 $42.34 \pm 0.62$ 

 $42.14{\pm}0.92$ 

 $42.60 \pm 0.41$ 

Yelp-5

 $47.49 {\pm} 6.83$ 

 $39.56 \pm 0.70$ 

 $39.01 \pm 0.17$ 

 $39.31 \pm 0.45$ 

 $38.44{\pm}0.37$ 

IMDb

 $18.33 \pm 0.61$ 

 $7.59 \pm 0.28$ 

 $7.80 \pm 0.23$ 

 $7.48 {\pm} 0.12$ 

 $7.20{\pm}0.20$ 

(c) Dynamic curves of generated thresholds



$$\mathbf{w}^{*}(\Theta) = \underset{\mathbf{w}}{\operatorname{arg\,min}} L_{u} = \frac{1}{M} \sum_{\mathbf{x}_{m} \in D^{u}} \ell_{\mathbf{x}_{m}}(\mathbf{w}, \Theta)$$
$$\Theta^{*} = \underset{\Theta}{\operatorname{arg\,min}} L_{\text{meta}}(\mathbf{w}^{*}(\Theta)) = \frac{1}{N} \sum_{i=1}^{N} H_{i}(\mathbf{w}^{*}(\Theta))$$

predicted

conf. of  $\mathbf{x}_m$ 

 $g(p_m^{ au})$ 

 $\Theta^t$ 

Solving the nested optimization problem contains three steps:

(1) Formulating learning manner of classifier network

$$\hat{\mathbf{w}}^{(t)}(\Theta) = \mathbf{w}^{(t)} - \alpha \frac{1}{n\mu} \sum_{i=1}^{n\mu} \nabla_{\mathbf{w}} \ell_{\mathbf{x}_i}(\mathbf{w}^{(t)}, \Theta^{(t)})$$
(2) Updating parameters  $\Theta$  of TGN  

$$\Theta^{(t+1)} = \Theta^{(t)} - \psi \frac{1}{n} \sum_{i=1}^{n} \nabla_{\Theta} H_i(\hat{\mathbf{w}}^{(t)}(\Theta))$$
(3) Updating parameters  $\mathbf{w}$  of classifier network  

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \frac{1}{n\mu} \sum_{i=1}^{n\mu} \nabla_{\mathbf{w}} \ell_{\mathbf{x}_i}(\mathbf{w}^{(t)}, \Theta^{(t+1)})$$
Flowchart of Meta-T

### Reference

[1] Zhang et al. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. NIPS 2021 [2] Xu et al. Dash: Semi-supervised learning with dynamic thresholding. ICML 2021