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Abstract

Label noise has been broadly observed in real-world datasets. To mitigate the negative impact of
overfitting to label noise for deep models, effective strategies (e.g., re-weighting or loss rectification)
have been broadly applied in prevailing approaches, which have been generally learned under the
meta-learning scenario. Despite robustness of noise achieved by the probabilistic meta-learning models,
they usually suffer from model collapse that degenerates generalization performance. In this paper,
we propose variational rectification inference (VRI) to formulate the adaptive rectification for loss
functions as an amortized variational inference problem and derive the evidence lower bound under
the meta-learning framework. Specifically, VRI is constructed as a hierarchical Bayes by treating the
rectifying vector as a latent variable, which can rectify the loss of the noisy sample with the extra
randomness regularization and be therefore more robust to label noise. To achieve the inference of the
rectifying vector, we approximate its conditional posterior with an amortization meta-network. By
introducing the variational term in VRI, the conditional posterior is estimated accurately and avoids
collapsing to a Dirac delta function, which can significantly improve the generalization performance.
Given a set of clean meta-data, VRI can be efficiently meta-learned within the bi-level optimization
programming. Besides, theoretical analysis guarantees that the meta-network can be efficiently learned
with our algorithm. Extensive comparison experiments and analyses demonstrate its effectiveness for
robust learning with noisy labels.
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1 Introduction

Learning from noisy labels (Xia et al, 2023; Yuan
et al, 2023; Huang et al, 2023; Wei et al, 2023;
Xu et al, 2021a; Ortego et al, 2021; Gudovskiy
et al, 2021) poses great challenges for training deep
models, whose performance heavily relies on large-
scaled labeled datasets. Annotating training data
with high confidence would be resource-intensive,
especially for some domains with ambiguous
labels, such as medical image segmentation and
multi-modal learning (Pu et al, 2023; Liu et al,
2023). In this case, label noise would inevitably
arise since there is usually a lack of experts for
accurate annotation (Ge et al, 2023).

Re-weighting (Kumar et al, 2010; Zadrozny,
2004; Jiang et al, 2018; Shu et al, 2023) and loss
rectification (Zhang et al, 2021a; Vahdat, 2017;
Yao et al, 2020; Sun et al, 2022) are two effective
strategies to reduce the bias of learning caused
by noisy labels. The basic idea is to construct
a weight function or transition matrix to miti-
gate the effect of noisy samples. Although those
strategies have been broadly applied, there are two
limitations. 1) The form of the weighting func-
tions needs to be manually specified under certain
assumptions on the data distribution, restricting
its expandability in the real world (Shu et al,
2019). 2) Hyper-parameters in these functions are
usually tuned by cross-validation, which suffers
from the issue of scalability (Franceschi et al,
2018).

A family of approaches based on meta-learning
have been recently proposed for noisy labels (Shu
et al, 2023; Xu et al, 2021a; Zheng et al, 2021;
Zhang et al, 2019; Shu et al, 2019; Zhao et al,
2023; Sun et al, 2022; Wu et al, 2021). By
introducing a small meta-data set with com-
pletely clean labels, an effective weighting (e.g.,
meta-weight-net (Shu et al, 2019)) or correction
(e.g., meta label correcter (Zheng et al, 2021))
function can be meta-learned under the meta-
learning scenario, omitting the prior assumption
for these functions and avoiding manually tun-
ing of hyper-parameters (Ren et al, 2018). To
enhance the interpretability and generalization
ability, Bayesian meta-learning (Zhao et al, 2023;
Sun et al, 2022) has been applied to model the
uncertainty of parameters and achieved a favor-
able performance for learning with noisy labels.
The probabilistic meta-weight-net (Zhao et al,
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Fig. 1 Illustration of model collapse with 70% uniform
noise. There exists a gap between MC and VRI in the meta-
loss curve. The norm of variance for the rectification vector
of MC degenerates into zero in some cases. The generaliza-
tion performance is also degraded.

2023) applies a Bayesian weight network to esti-
mate the distribution of the sample weight. The
probabilistic formulation is elegant. However, the
weighting network merely takes the loss as the
input to compute the sample weight, it would be
deficient in controlling the learning process and
result in low expression capability (Sun et al,
2022). To strengthen the capability of the meta-
network, a rectification network has been pro-
posed in (Sun et al, 2022) to achieve rectifying
the training process with an estimated vector.
By treating the rectifying vector as a latent vari-
able, the predictive posterior can be estimated
by Monte-Carlo (MC) approximation. Although
the MC approximation has achieved desirable
effectiveness for rectifying the bias of the learn-
ing process, we have observed that there would
exist model collapse (Iakovleva et al, 2020) where
the conditional prior collapses to a Dirac delta
function and the model degenerates to a deter-
ministic parameter generating network, especially
for a small sampling number in MC. This collapse
may degrade the generalization performance of the
model, which is illustrated in Fig. 1.

In this work, to tackle the model collapse issue
in MC approximation, we propose to formulate
learning rectification process as an amortized vari-
ational inference problem and derive the evidence
lower bound (ELBO) under the meta-learning
framework. We construct variational rectification
inference (VRI) to achieve an adaptively rectify-
ing learning process for noisy labels as shown in
Fig. 2. We treat the rectifying vector as a latent
variable and build a hierarchical Bayes under the
setting of the meta-learning scenario. We intro-
duce an amortization meta-network to estimate
the posterior distribution of the rectifying vec-
tor and achieve a rectified prediction via Monte
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Fig. 2 The meta-network can generate the rectifying vec-
tor to integrate into the inference of the classification
network. The variational module can avoid model collapse
via a prior network.

Carlo sampling. The proposed meta-network is
built to leverage the feature embedding and cor-
responding label as inputs, which can faithfully
exploit sufficient information lying in the feature
space and significantly improve the generalization
performance of the classification network.

By building a variational term with a prior net-
work to constraint the posterior, VRI can avoid
the model collapse in MC approximation with lim-
ited samples and further enhance the capability of
inference for the unbiased estimation of the pre-
dictive posterior. VRI can be integrated into the
meta-learning framework to achieve adaptive rec-
tification for noisy samples. By introducing the
meta-data, we conduct the meta-learning process
with a bi-level programming schema and achieve
robust learning with label noise.

Our contributions can be summarized in four
aspects.

• We formulate the learning rectification process
as an amortized variational inference problem
and derive the ELBO under the meta-learning
framework.

• We build a variational constraint for the poste-
rior, which can avoid the model collapse in MC
approximation.

• We propose the learning framework of VRI,
which can be efficiently solved via bi-level opti-
mization, exhibiting virtues of robust learning
for label noise.

• We provide the rigorously theoretical guarantee
for the convergence of the proposed algorithm
for the meta-network.

We conduct extensive experiments on five chal-
lenging benchmark datasets under a variant of
noise types. Our VRI outperforms the state-of-
the-art in most cases. Additional promising results

and further complementary analysis also demon-
strate the effectiveness of VRI.

The rest of this paper is organized as follows.
Section 2 introduces related works and discusses
the relations to our work. Section 3 includes
the problem setting, preliminaries and our noise-
robust method Variational Rectification Inference
(VRI). We also provide the theoretical provide for
VRI. Section 4 reports experimental results on
three noise types and various datasets. We test the
performance of VRI on the restricted scenario (i.e.
training without the meta-set). Finally, Section 5
gives a conclusion.

2 Related Work

Re-weighting. The main idea of the sample re-
weighting strategy is to assign a small weight to
samples with corrupted labels (Shu et al, 2019,
2023). Since the clean example usually have a
small loss and deep models can memorize them at
the beginning of the training steps (Arpit et al,
2017), samples with the lower loss are selected for
learning at each epoch in (Shen and Sanghavi,
2019; Cui et al, 2019). Based on this assump-
tion, MentorNet (Jiang et al, 2018) adopts the
idea of curriculum learning to train a mentor
network to guide learning of the student classifi-
cation network. A Bayesian model (Wang et al,
2017) has also been extended to inferring the
latent variables of sample weights for handling
label noise. To avoid manually designing or tun-
ing weighting functions, meta-learning has been
introduced to learn to generate weights from a
meta-data set with clean labels. The pioneering
work, inspired by the two nested loops of opti-
mization (Finn et al, 2017), sets the weight value
as trainable parameters (Ren et al, 2018) and
achieves a dynamically weighting strategy. Meta-
Weight-Net (Shu et al, 2019) further improves the
scalability of the weighting space by directly gen-
erating weights via an MLP and being learned
under the meta-learning scenario.

Correcting. There are plenty of methods
working on loss or label correction of the objective
function, which can be essentially categorized into
three aspects. 1) A confusion matrix (Sukhbaatar
et al, 2015; Han et al, 2018a; Tanno et al, 2019;
Yao et al, 2020), restoring the transition proba-
bility between the true label and the noisy one, is
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estimated and multiplied to the prediction vector.
This can be considered as a smooth regulariza-
tion for the prediction to mitigate the impact of
corrupted labels. The following works (Hendrycks
et al, 2018; Pereyra et al, 2017) introduce a set
of clean anchor-data to improve the estimation
accuracy of the confusion matrix. Recently, an
MC approximation framework (Sun et al, 2022)
is proposed to learn to generate the rectifica-
tion vector for loss functions, demonstrating the
superiority of handling the sample ambiguity in
noisy data. 2) Another family of methods, such as
Reed (Reed et al, 2015), D2L (Ma et al, 2018),
S-Model (Goldberger and Ben-Reuven, 2017),
includes extra inference steps to correct corrupted
labels for the following optimization. By lever-
aging clean meta-data, MSLC (Wu et al, 2021;
Zheng et al, 2021) learns an efficient label correc-
tor to reduce label noise. 3) Designing appropriate
loss functions also provide an effective solution to
significantly enhance the robustness of deep mod-
els. Noise-tolerant losses, such as mean absolute
error (MAE), have been theoretically analyzed for
noisy labels in (Ghosh et al, 2017). The follow-
ing works (Zhang and Sabuncu, 2018; Wang et al,
2019) further improve the performance of MAE
on challenging datasets with generalized MAE
and cross-entropy losses. Recently, a dynamically
weighted bootstrapping loss (Arazo et al, 2019)
has been designed for noisy samples based on an
unsupervised beta mixture model.

Meta-learning, leverages shared knowledge
among a series of tasks to improve the per-
formance of the current task, which has made
great breakthroughs recently (Hospedales et al,
2022). The typical idea is to parameterize a train-
able function as the meta-learner to generate the
parameters or statistics for base learners, which
can be regarded as the ”black-box” adaptation.
By introducing the clean meta-data set, the afore-
mentioned strategies (e.g., re-weighing (Ren et al,
2018; Zhao et al, 2023; Shu et al, 2019, 2023)
or loss correction (Zhang et al, 2019; Wu et al,
2021; Zheng et al, 2021; Sun et al, 2022)) can be
meta-learn in a data-driven way, avoiding manu-
ally tuning hyper-parameters with the validation
set in conventional methods (Ren et al, 2018).

Semi-supervised learning (SSL), builds a
labeled set that contains confident examples by
sample selection strategies and employs modern

SSL techniques (e.g., FixMatch (Sohn et al, 2020)
and MixMatch (Berthelot et al, 2019)) to effec-
tively leverage the labeled set and the remaining
unlabeled set (Li et al, 2020; Liu et al, 2020; Wei
et al, 2020; Xia et al, 2023). Compared with other
branchs, SSL-based methods have achieved state-
of-the-art performance on image benchmarks since
they can incorporate prior knowledge to exploit
discriminative information from finite training
samples. However, the data generative process has
the impact on the performance of SSL methods
(Yao et al, 2023). When the image feature is the
cause of the label, the performance of SSL meth-
ods is worse than model-based methods, e.g., the
method based on the confusion matrix (Yao et al,
2020).

Other methods. Additional lines of methods
for handling label noise include 1) data augmen-
tation (Zhang et al, 2018; Nishi et al, 2021),
exploring different augmentation policy to mit-
igate the side-effect of noisy labels, 2) sample
selection (Han et al, 2018b; Yu et al, 2019; Song
et al, 2019; Wei et al, 2022; Xia et al, 2023), design-
ing an effective selection strategy to select clean
data from the noisy training set, 3) early-learning
regularization (Liu et al, 2020), combating noisy
signal by regularizing model in the early learning
stage, 4) contrastive learning (Wei et al, 2023; Li
et al, 2022), combating noisy signal via enhancing
representation ability of deep models.

Relations to us. In contrast to prevailing
works, we formulate the rectification process as an
amortized variational inference problem. By build-
ing a hierarchical Bayes model, VRI exhibits the
favorable property of handling the sample ambi-
guity. The variational term in VRI can avoid the
model collapse exiting in those MC approximation
methods.

3 Variational Rectification
Inference

We propose variational rectification inference
(VRI) for adaptively rectifying the learning pro-
cessing under the setting of meta-learning, which
effectively mitigates the side-effect of noisy labels.
VRI includes a meta-network that generates a
rectifying vector to support the learning of the
classification network. The whole learning proce-
dure is formulated as an amortized variational
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inference problem. We integrate VRI into the bi-
level optimization steps and achieve meta-learning
the rectifying process.

3.1 Preliminaries

Robust Learning with Meta-Data. Given the
training set DN = {x(i),y(i)}Ni=1 with noisy labels,
the aim for robust learning is to achieve good gen-
eralization performance on the clean testing set.
Under the setting of meta-learning, we construct
a set of clean examples DM = {x̃(i), ỹ(i)}Mi=1,
regarded as the meta-data set, which is smaller
than the training set DN of N ≫ M . We usu-
ally choose the validation set as the meta-data
set in practice. Therefore, the meta-learning pro-
cess can be considered as learning to tune the
hyper-parameters in a data-driven way.

Rectification for the loss function. Loss rec-
tification (Hendrycks et al, 2018; Sun et al, 2022)
is an effective tool for mitigating the effect of
the label noise with meta-data. There are essen-
tially two networks in the learning framework. The
meta-network V (y(i), z(i);ϕ) with the parameter
of ϕ is trained with the meta-data set to take the
feature embedding z(i) and label y(i) of the exam-
ple (x(i),y(i)) as input and generates a vector v(i)

to rectify the learning process of the classification
network. Let ⊙ denote the element-wise prod-
uct. By multiplying v(i) on the logits calculated
from the classification network v(i) ⊙ F (x(i); θ),
the rectified loss with noisy labels can still produce
effective update direction. Therefore, the negative
impact from corrupted labels in the noisy training
set can be mitigated.

3.2 Variational Rectification
Inference

The inference process in our framework is built as
a hierarchical Bayes model. From the probabilistic
perspective, we treat the rectifying vector as the
latent variable and compute the posterior distribu-
tion p(v|x,y) given the observation of the sample.
Our goal of this task is to accurately approxi-
mate the conditional predictive distribution with
parameters θ by maximizing its log-likelihood

max log pθ(y|x) = log

∫
pθ(y|x,v)p(v|x)dv.

(1)

The rectified learning process in this work
consists of two steps. First, form the poste-
rior distribution p(v|x) over v for each sample
(x,y). Then, calculate the posterior predictive
pθ(y|x,v). Since inferring the posterior p(v|x)
is generally intractable, we resort to approxi-
mating it by leveraging a variational distribu-
tion qϕ(v|x,y). We minimize the Kullback–Leibler
(KL) divergence DKL between qϕ(v|x,y) and
p(v|x,y) to obtain the variational distribution

minDKL[qϕ(v|x,y)||pθ(v|x,y)]. (2)

We can then derive the tractable evidence
lower bound (ELBO) of the conditional predic-
tive distribution to approximate the posterior
p(v|x,y) by applying the Bayes’ rule

max log pθ(y|x) ≥ LELBO

= E
qϕ(v|x,y)

pθ(y|x,v)−DKL[qϕ(v|x,y)||pω(v|x)].

(3)
The first term of the ELBO is the predic-

tive log-likelihood conditioned on the input x
and the inferred rectifying vector v. Maximiz-
ing it can achieve accurate rectified prediction for
each sample. The second term is to minimize the
discrepancy between the variational distribution
qϕ(v|x,y) and the prior pω(v|x) assigned to a cer-
tain distribution form. The detailed derivation of
the ELBO is provided in Appendix A.1. Once we
obtain qϕ(v|x,y), the inference procedure can be
summarized as 1) forming the variational distri-
bution qϕ(·) on the fly with amortized variational
inference (AVI); 2) calculating the posterior pre-
dictive distribution p(y|x,v) via Monte Carlo
estimation.

Application Details. In practice, we assume
that the latent variable v obeys the factorized
Gaussian distribution v ∼ N (µ,σ2). There are
three networks in our framework. The classifica-
tion network F with parameters θ works on the
basic categorizing task. We implement the vari-
ational distribution with an amortization meta-
network V with parameters ϕ that takes a pair
of the feature embedding and label of the sample
as input and outputs the parameters (µ,σ2) of
a factorized Gaussian distribution q. By sampling
a vector v(i) from q, F can compute a rectified
prediction ŷ(i). The prior is also implemented as
a network H with parameters ω that takes the
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feature as inputs and outputs another factorized
Gaussian distribution p. To enable an unbiased
estimate of the objective in Eq. (1), we adopt the
Monte Carlo Sampling strategy that repeats the
above process multiple times and averages all pre-
dictions. Note that it is commonly intractable to
back-propagate through sampling operations, we
solve it by applying the reparameterization trick
proposed in (Kingma and Welling, 2014) as

v = µ+ σ · ϵ with ϵ ∼ N (0, I). (4)

We denote RP(·) as the sampling operation with
the reparameterization trick for simplicity in the
following section.

3.3 Meta-Learning Process

We present the practical objective function to
achieve jointly learning the three networks of
Fθ(·), Vϕ(·), and Hω(·). By formulating the prob-
lem as a meta-learning task, we conduct bi-
level optimization programming to solve it. The
exhaustive derivation for each updating step is
also provided in the following.

3.3.1 The practical objectives

We derive the practical objective from the ELBO
in Eq. (3). To improve the generalization perfor-
mance on noisy labels, the empirical loss for our
prediction model F (·) of N samples is rectified
with the support of the meta-network

Lemp(θ) =
1

N

N∑
i=1

L(y(i),v(i) ⊙ Fθ(x
(i))), (5)

where v(i) is a rectifying vector sampled from the
variational posterior q(i)(v) with the form of the

factorized Gaussian N (µ(i),σ(i)2), whose param-
eters are generated by the amortization meta-
network (µ(i),σ(i)) ← Vϕ(F

′
θ′(x(i)),y(i)). F ′

θ′ is
the feature extractor in Fθ, where θ′ ⊂ θ. To sta-
bilize the learning process, we bound v(i) with the
sigmoid function. The form of the loss function
L(.) is flexible, we adopt the basic cross-entropy
loss with the softmax function.

For the objective w.r.t. Fθ, the aim is to
achieve the unbiased estimation of the conditional
predictive distribution, which can be attained with
Monte Carlo sampling. Recall reparameterization

Sampling7

4

5

6

Fig. 3 Flowchart of the learning algorithm. The solid and
dashed lines denote forward and backward propagation,
respectively. For each iteration, the meta-network ϕ gen-
erates the distribution of v, and then produces multiple
examples via the sampling module to estimate the predic-
tive distribution. By computing the gradient through the
update step 4, the meta-network can be trained in step 5.
The prior network is also jointly optimized in step 6. The
classification network θ will be updated with support of the
learned meta-network in step 7.

(RP) in Eq. (4), supposing the sampling number
for v is k, the ultimate objective for the ELBO in
Eq. (3) can be written as

argmin
θ

Lemp(θ) =

1

kN

N∑
i=1

k∑
j=1

L(y(i),RP(j)[V (F ′
θ′(x(i)),y(i))]⊙ Fθ(x

(i)))

+ λDKL[V (F ′
θ′(x(i)),y(i))||H(F ′

θ′(x(i)))].
(6)

Here, we add a coefficient λ to weight the KL term
as beta-VAE (Higgins et al, 2017). The KL term
can be considered as a regularizer to the meta-
network, which is proved to improve the stability
of the meta-learning process as indicated in (Bao
et al, 2021).

The Monte Carlo estimation strategy for the
predictive distribution ensures an efficient feed-
forward propagation phase of the model during
training. We further analyze the effect of the
sampling number in the experimental section.

For the meta objective w.r.t. Vϕ, the perfor-
mance of the meta-network is evaluated on the
meta-data set DM . Since the feed-forward prop-
agation in Eq. (6) involves the support of Vϕ

and Hω, we denote the updated θ as θ∗(ϕ, ω).
Therefore, the objective for the meta-network with
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meta-data (x̃(i), ỹ(i)) can be written as

argmin
ϕ,ω

Lmeta(ϕ, ω) =
1

M

M∑
i=1

L(ỹ(i), F (x̃(i); θ∗(ϕ, ω))).

(7)
By minimizing Eq. (7) w.r.t. ϕ involved in the

updated Fθ∗ , the learned Vϕ∗ can achieve unbiased
estimation for the posterior and generate rectify-
ing vectors with high fidelity to guide following
updates of θ. Also, the prior network Hω∗ restricts
Vϕ∗ to avoid collapsing to produce Dirac delta
functions.

3.3.2 Bi-level optimization

We build an iterative optimization algorithm
within the bi-level programming frame-
work (Franceschi et al, 2018) to obtain the
optimal parameters {θ∗, ϕ∗, ω∗} as follows

ϕ∗, ω∗ = argmin
ϕ,ω

Lmeta(θ∗(ϕ, ω,DN ),DM ), s.t.

θ∗(ϕ, ω,DN ) = argmin
θ
Lemp(ϕ, ω, θ,DN ).

(8)
We adopt stochastic gradient descent (SGD)

to solve (8). Since the prediction from Fθ is recti-
fied by Vϕ, the gradient for θ is closely related to

ϕ and ω. Thus, θ̂(ϕ, ω) denotes that the updated

θ̂ is the function of ϕ and ω. Here, we assign a
learning rate of α. By sampling a mini-batch of n
training examples {(xi,yi)}ni=1, the updating step
of the classification network Fθ w.r.t. Eq. (6) can
be written as
θ̂(t)(ϕ, ω) = θ(t) − α∇θL̃emp(θ), where L̃emp(θ) =

1

kn

n∑
i=1

k∑
j=1

L(y(i),RP(j)[V (F ′
θ′(t)(x

(i)),y(i);ϕ)]⊙ Fθ(t)(x
(i)))

+ λDKL[V (F ′
θ′(t)(x

(i)),y(i);ϕ)||H(F ′
θ′(t)(x

(i);ω)].
(9)

Given a mini-batch of m meta samples
{(x̃i, ỹi)}mi=1, the learning of ϕ and ω can be
achieved by back-propagating through the learn-
ing process of θ. Specifically, after obtaining
θ̂(t)(ϕ, ω) with fixed ϕ and ω in Eq. (9), the param-
eter of ϕ in the meta-network Vϕ(·) can be updated
w.r.t. the objective in Eq. (7)

ϕ(t+1) = ϕ(t)−η 1

m

m∑
i=1

∇ϕL(ỹ
(i), F (x̃(i); θ̂(t)(ϕ, ω))),

(10)

Algorithm 1 The Bi-level optimization for VRI

Require: Training set DN , meta set DM , batch
size n,m, outer iterations T , step size
α, η, sampling number k,

Ensure: Optimal θ∗

1: Initialize parameters θ(0), ϕ(0), and ω(0)

2: for t ∈ {1, . . . , T} do
3: SampleBatch(DN , n),SampleBatch(DM ,m)

4: Form learning process of θ̂(t)(ϕ, ω) ▷ Eq. (9)

5: Optimize ϕ(t) with θ̂(t)(ϕ) ▷ Eq. (10)

6: Optimize ω(t) with θ̂(t)(ω) ▷ Eq. (11)
7: Optimize θ(t) using the updated ϕ(t+1)

▷ Eq. (12)
8: end for

where η denotes the step size. Similar update steps
for the prior network can be written as

ω(t+1) = ω(t)−η 1

m

m∑
i=1

∇ωL(ỹ
(i), F (x̃(i); θ̂(t)(ϕ, ω)))

(11)
This bi-level programming manner results in the
best hypothesis on the meta-data set, whose the-
oretical guarantee has been rigorously studied
in (Bao et al, 2021).

Once Vϕ has been updated, we utilize the cur-
rent training batch to conduct robustly learning
of the classification network Fθ(t)

θ(t+1) = θ(t) − α
1

kn

n∑
i=1

k∑
j=1

∇θL(y
(i), F (x(i); θ(t))

⊙ RP(j)[V (F ′(x(i); θ
′(t)),y(i);ϕ(t+1))]).

(12)
We summarize the overall updating steps in

Algorithm 1 and illustrate the main informa-
tion flow in Fig. 3. Estimating the conditional
predictive distribution can be efficiently imple-
mented via the Monte Carlo sampling of averaging
k results. Indeed, by introducing the variational
term, VRI merely require a small number (e. g.,
k = 1 or 2) of samples for the good performance.
By applying RP trick, the sampling operation is
tractable for gradient computation. Therefore, all
gradients, including the bi-level programming pro-
cess, can be efficiently calculated by prevailing
differentiation tools.
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3.4 Convergence Analysis

The convergence of our proposed Algorithm 1 can
be rigorously theoretically guaranteed. Since the
meta-network V (ϕ) is crucial in our framework,
we prove that the algorithm for V (ϕ) can con-
verge to the stationary point of the meta loss
function under some mild conditions. To facili-
tate the proof, we adopt the stochastic gradient

∇L̃meta
(
θ̂(t)

(
ϕ(t)

))
in the following, which is

identical to uniformly drawing a mini-batch of
samples at random in Eq. (9).

Lemma 1 (Smoothness). Suppose the loss func-
tion L w.r.t. θ in Eq. (7) is ℓ-smooth and τ -
Lipschitz, the KL term DKL w.r.t. the output of
V (ϕ) has the o-bounded gradient, and V (ϕ) is dif-
ferential with the δ-bounded gradient and twice
differential with its ζ-bounded Hessian. Then the
meta loss function w.r.t. θ is ℓ̂-smooth.

Proof. See Appendix A.2.

Lemma 1 implies that the meta loss w.r.t. the
meta-network is smooth-bounded. We provide the
convergence rate in Theorem 1 with the support
of this essential property.

Theorem 1 (Convergence Rate). Assume
that the variance of the stochastic gra-

dient ∇L̃meta
(
θ̂(t)

(
ϕ(t)

))
is bounded

E
[∥∥∥∇L̃meta

(
θ̂(t)

(
ϕ(t)

))
−∇Lmeta

(
θ̂(t)

(
ϕ(t)

))∥∥∥2
2

]
≤ σ2 < ∞. Following directly from Lemma 1, let
the learning rate αt satisfies αt = min{1, κ

T }, for
some κ > 0, such that κ

T < 1, and ηt, 1 ≤ t ≤ T is

a monotone descent sequence, ηt = min{ 1
ℓ̂
, C
σ
√
T
}

for some C > 0, such that σ
√
T

C ≥ ℓ̂ and∑∞
t=1 ηt ≤ ∞,

∑∞
t=1 η

2
t ≤ ∞. Then we have

1

T

T∑
t=1

E
[∥∥∥∇Lmeta

(
θ̂(t)(ϕ(t))

)∥∥∥2
2

]
≤ O( 1√

T
).

(13)

Proof. See Appendix A.2.

More specifically, Theorem 1 implies that
our learning algorithm VRI can achieve

E
[∥∥∥∇Lmeta

(
θ̂(t)

(
ϕ(t)

))∥∥∥2
2

]
≤ ϵ in O(1/ϵ2) steps.

As the iteration step increases, the algorithm
would ultimately converge to a stationary point.

4 Experiments

We conduct classification experiments with vari-
ant noise types on five benchmarks, includ-
ing three real-world datasets, and obtain bet-
ter performance compared with the state-of-the-
art (SOTA) method. Exhaustive analysis further
demonstrates the virtue of the proposed model
on LNL task. The code is now available at https:
//github.com/haolsun/VRI.

4.1 Setup

Datasets. We evaluate VRI on five benchmarks
of CIFAR-10, CIFAR-100, Clothing1M (Xiao et al,
2015), and Food-101N (Lee et al, 2018), and fol-
low the consistent experimental protocol in (Shu
et al, 2019; Zhang et al, 2021b) for the fair com-
parison. We randomly select 1000 training samples
(2%) as meta data for CIFAR-10 & 100. For Cloth-
ing1M and Food-101N, we use the validation set
for meta-learning. More details for constructing
those datasets are provided as following.

CIFAR-10 (Krizhevsky et al, 2009) dataset
consists of 60,000 images of 10 categories. We
adopt the splitting strategy in (Shu et al, 2019) by
randomly selecting 1,000 samples from the train-
ing set to construct the meta dataset. We train
the classification network on the remaining 40,000
noisy samples and evaluate the model on 1,0000
testing images.

CIFAR-100 (Krizhevsky et al, 2009) is more
challenging than CIFAR-10 including 100 classes
belonging to 20 superclasses where each category
contains 600 images with the resolution of 32 ×
32. Similar splitting manners as CIFAR-10 are
employed.

Clothing1M (Xiao et al, 2015) is a large-scale
dataset that is collected from real-world online
shopping websites. It contains 1 million images of
14 categories whose labels are generated based on
tags extracting from the surrounding texts and
keywords, causing huge label noise. The estimated
percentage of corrupted labels is around 38.46%.
A portion of clean data is also included in Cloth-
ing1M, which has been divided into the training
set (903k images), validation set (14k images), and
test set (10k images). We select the validation set
as the meta dataset and evaluate the performance
on the test set. We resize all images to 256× 256
as in (Shu et al, 2019).
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Table 1 Architectures of the classification network, the meta-network Vϕ(·), and the prior-network Hω(·)

Noise Type Uniform Flip Instance Real-world

CIFAR-10 WRN-28-10 ResNet-34 ResNet-18 -
CIFAR-100 WRN-28-10 ResNet-34 ResNet-18 -
Clothing-1M - - - ResNet-50
Food-101N - - - ResNet-50
ANIMAL-10N - - - VGG-19

Output size Layers

512 Input ConCat (sample features, embedding labels)
Vϕ(·) 512 fully connected, tanh

Num. of classes fully connected, Sigmoid to µv, logσ
2
v

512 Input sample features
Hω(·) 512 fully connected, tanh

Num. of classes fully connected, Sigmoid to µv, logσ
2
v

Table 2 Hyperparameters of the classification network in our experiments on different datasets.

Dataset CIFAR-10 CIFAR-100 Clothing1M Food-101N ANIMAL-10N

Sampling Number 2 2 1 1 1
Batch Size 100 100 128 128 128
Optimizer SGD SGD SGD Adam Adam
Initial Learning Rate 0.02 0.02 0.02 3e-4 3e-4
Decay Rate 5e-4 5e-4 5e-4 - -
Total Epoch Number 160 160 10 30 30
Momentum 0.9 0.9 0.9 - -

Food-101N (Lee et al, 2018) is constructed
based on the taxonomy of 101 categories in Food-
101 (Bossard et al, 2014). It consists of 310k
images collected from Google, Bing, Yelp, and Tri-
pAdvisor. The noise ratio for labels is around 20%.
We select the validation set of 3824 as the meta-
data. Following the testing protocol in (Lee et al,
2018; Zhang et al, 2021b), we learn the model on
the training set of 55k images and evaluate it on
the testing set of the original Food-101.

ANIMAL-10N (Song et al, 2019) contains
human-labeled online images for 5 pairs of animals
with confusing appearance. The estimated label
noise rate is 8%. There are 50,000 training and
5,000 testing images with the resolution of 64 ×
64. We evaluate our model on the dataset without
a clean meta set.

Noise settings. We conduct experiments to
study four types of corrupted labels. 1) For flip
noise, we randomly select a transition class for
each class and form the label noise by flipping the
label to the transition class with a certain prob-
ability ρ. 2) For uniform noise, we independently
change the label to a random class with a proba-
bility of ρ. 3) For instance-dependent (ID) noise,
we adopt the strategy in (Xia et al, 2020b) to con-
struct the dataset with noise caused by the uncer-
tain annotation of the ambiguous observation. 4)
For real-world noise, differed from the above syn-
thetic noise, it is introduced at the stage of data
collection in real world with diverse forms of noise.

For flip, uniform, and ID noise, we conduct exper-
iments under variant settings of noise ratios on
CIFAR-10 & 100, where ρ ∈ {0.2, 0.4, 0.6}.
Network architectures. The architecture of the
classification network affects the performance. We
present the result with different backbones in
the following comparison experiments and list
the architecture with best performance in Tab.
1. Following the setting in (Ren et al, 2018;
Shu et al, 2019; Zhang et al, 2021b), we adopt
ResNet-18&32&34 (He et al, 2016), Wide ResNet-
28-10 (Zagoruyko and Komodakis, 2016), and
ResNet-50 (He et al, 2016) in the following experi-
ments. Note that ResNet-32 is a tiny model which
is much slimmer than ResNet-18/34. We imple-
ment the meta-network and prior network as the
three-layer fully-connected network whose dimen-
sion for hidden layers is set as 1024. Since its
inputs are the feature embedding concatenated
with the one-hot label vector, the input dimension
is k+c, where k, c are the dimension of the feature
embedding and the number of categories, respec-
tively. Besides, the dimension of the output layer
of the meta-network is 2c. For the meta-network
of Vϕ(·) and the prior-network of Hω(·), all models
share the same architecture, as in Tab. 1.

Other hyperparameters. The weight coefficient
λ for the KL term is set to be 0.001 for all
experiments. Its sensitivity for the generalization
performance is analysed in the ablation study.
The sampling number of k is set as 2 for CIFAR-
10 & 100 and 1 for Clothing1M, Food-101N, and
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Table 3 Testing Accuracy (%) on CIFAR-10 and CIFAR-100 with varying ratios of three noise types, including flip
noise, instance-dependent noise and uniform noise. Note that “ResNet-18/34” denotes applying ResNet-18 for
CIFAR-10 and ResNet-34 for CIFAR-100.

Dataset CIFAR-10 CIFAR-100

Flip noise

Noise Ratio 20% 40% 20% 40%

Baseline ResNet-32 76.83 ± 0.3 70.77 ± 2.3 50.86 ± 0.3 43.01 ± 1.2
MW-Net (Shu et al, 2019) (NeurIPS19) ResNet-32 90.33 ± 0.6 87.54 ± 0.2 64.22 ± 0.3 58.64 ± 0.5
MLC (Wang et al, 2020) (CVPR20) ResNet-32 90.07 ± 0.2 88.97 ± 0.5 64.91 ± 0.4 59.96 ± 0.6
CORES* (Cheng et al, 2021) (ICLR21) ResNet-32 91.41 ± 0.4 89.47 ± 0.3 64.82 ± 0.5 62.76 ± 0.4
PMW-Net (Zhao et al, 2023) (TNNLS23) ResNet-32 90.47 ± 0.1 87.69 ± 0.3 64.95 ± 0.2 58.72 ± 0.2
WarPI (Sun et al, 2022) (PR22) ResNet-32 90.93 89.87 65.52 62.37
FaMUS (Xu et al, 2021b) (CVPR21) ResNet-32 90.78 88.91 65.79 59.66
VRI (Ours) ResNet-32 91.93 ± 0.1 91.21 ± 0.3 66.03 ± 0.2 65.04 ± 0.4

DivideMix (Li et al, 2020) (ICLR20) ResNet-18 - 93.4 - 72.1
ELR (Liu et al, 2020) (NeurIPS20) ResNet-34 93.28 ± 0.2 90.35 ± 0.4 74.20 ± 0.3 73.73 ± 0.3
JNPL (Kim et al, 2021) (CVPR21) ResNet-34 93.45 90.72 69.95 59.51
SR (Zhou et al, 2021) (ICCV21) ResNet-34 89.55 ± 0.3 85.45 ± 0.2 64.79 ± 0.1 49.51 ± 0.6
MSLC (Wu et al, 2021) (AAAI21) ResNet-34 94.11 92.48 70.20 69.24
SFT (Wei et al, 2022) (ECCV22) ResNet-34 91.53 ± 0.3 89.93 ± 0.5 71.23 ± 0.3 69.29 ± 0.4
GSS-SSL (Yu et al, 2023) (CVPR23) ResNet-34 93.42 ± 0.1 91.82 ± 0.1 73.81 ± 0.2 65.84 ± 0.2
VRI* (Ours) ResNet-18 94.87 ± 0.2 93.97 ± 0.3 76.41 ± 0.3 68.86 ± 0.3

Instance-dependent noise

Noise Ratio 20% 40% 20% 40%

Baseline ResNet-18 / 34 85.10 ± 0.6 77.00 ± 2.1 52.19 ± 1.4 42.26 ± 1.2
Co-teaching (Han et al, 2018b) (NeurIPS18) ResNet-18 / 34 86.54 ± 0.1 79.98 ± 0.3 57.24 ± 0.6 45.69 ± 0.9
Peer loss (Liu and Guo, 2020) (ICML20) ResNet-18 / 34 88.19 ± 0.5 81.53 ± 0.7 63.82 ± 0.3 47.91 ± 0.5
CORES* (Cheng et al, 2021) (ICLR21) ResNet-18 / 34 89.67 ± 0.3 82.99 ± 0.5 64.86 ± 0.5 49.62 ± 0.7
WarPI (Sun et al, 2022) (PR22) ResNet-18 / 34 89.76 ± 0.4 87.57 ± 0.9 65.08 ± 0.6 57.38 ± 1.0
CDR (Xia et al, 2020a) (ICLR21) ResNet-18 / 34 90.41 ± 0.3 83.07 ± 1.3 67.33 ± 0.6 55.94 ± 0.5
Me-Momen. (Bai and Liu, 2021) (ICCV21) ResNet-18 / 34 90.86 ± 0.2 86.66 ± 0.9 68.11 ± 0.5 58.58 ± 1.2
FaMUS (Xu et al, 2021b) (CVPR21) ResNet-18 / 34 91.23 ± 0.3 89.88 ± 0.6 66.65 ± 0.5 57.21 ± 1.2
PES (Bai et al, 2021) (NeurIPS21) ResNet-18 / 34 92.69 ± 0.4 89.73 ± 0.5 70.49 ± 0.7 65.68 ± 1.4
SFT (Wei et al, 2022) (ECCV22) ResNet-18 / 34 91.41 ± 0.3 89.97 ± 0.5 71.83 ± 0.4 69.91 ± 0.5
Late Stop (Yuan et al, 2023) (ICCV23) ResNet-18 / 34 91.08 ± 0.2 87.41 ± 0.4 68.59 ± 0.7 59.28 ± 0.5
PADDLES (Huang et al, 2023) (ICCV23) ResNet-18 / 34 92.76 ± 0.3 89.87 ± 0.5 70.88 ± 0.6 66.11 ± 1.2
VRI (Ours) ResNet-18 92.13 ± 0.3 90.60 ± 0.4 71.24 ± 0.2 68.17 ± 0.5
VRI*(Ours) ResNet-18 93.36 ± 0.3 92.96 ± 0.5 75.74 ± 0.2 70.39 ± 0.6

Uniform noise

Noise Ratio 40% 60% 40% 60%

ELR (Liu et al, 2020) (NeurIPS20) ResNet-34 91.43 ± 0.2 88.87 ± 0.2 68.43 ± 0.4 60.05 ± 0.9
MSLC (Wu et al, 2021) (AAAI21) ResNet-34 91.42 87.25 68.70 60.25
FaMUS (Xu et al, 2021b) (CVPR21) ResNet-18 90.50 85.80 69.40 62.90
SFT (Wei et al, 2022) (ECCV22) ResNet-18 89.54 ± 0.3 - 69.72 ± 0.3 -
SOP (Liu et al, 2022) (ICML22) ResNet-34 90.09 ± 0.3 86.78 ± 0.2 70.12 ± 0.5 60.06 ± 0.4
VRI (Ours) ResNet-18 91.29 ± 0.2 87.68 ± 0.3 68.92 ± 0.2 62.12 ± 0.2
VRI* (Ours) ResNet-18 92.47 ± 0.2 89.23 ± 0.3 70.45 ± 0.2 63.58 ± 0.2

Baseline WResNet-28-10 68.07 ± 1.2 53.12 ± 3.0 51.11 ± 0.4 30.92 ± 0.3
MentorNet (Jiang et al, 2018) (ICML18) WResNet-28-10 87.33 ± 0.2 82.80 ± 1.4 61.39 ± 4.0 36.87 ± 1.5
MW-Net (Shu et al, 2019) (NeurIPS19) WResNet-28-10 89.27 ± 0.3 84.07 ± 0.3 67.73 ± 0.3 58.75 ± 0.1
MLC (Wang et al, 2020) (CVPR20) WResNet-28-10 89.20 ± 0.1 84.22 ± 0.3 - -
DMI-NS (Chen et al, 2021a) (AAAI21) WResNet-28-10 91.11 ± 0.5 83.46 ± 0.5 66.95 ± 0.2 58.35 ± 0.1
WarPI (Sun et al, 2022) (PR22) WResNet-28-10 89.73 84.44 67.90 59.04
VRI (Ours) WResNet-28-10 91.29 ± 0.2 84.68 ± 0.2 67.92 ± 0.2 59.32 ± 0.3
VRI* (Ours) WResNet-28-10 93.91 ± 0.2 91.10 ± 0.2 74.95 ± 0.3 68.56 ± 0.4
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Table 4 Testing Accuracy (%) on real-world noise, including Clothing1M and Food-101N.

Clothing1M Food-101N

MWNet (Shu et al, 2019) 73.72 DivideMix (Li et al, 2020) 74.76 Base Model 81.67 CNeth (Lee et al, 2018) 83.47
ELR (Liu et al, 2020) 74.81 CAL (Zhu et al, 2021) 74.17 MWNet (Shu et al, 2019) 84.72 SMP (Han et al, 2019) 85.11
PLC (Zhang et al, 2021b) 73.24 WarPI (Sun et al, 2022) 74.98 NRank (Sharma et al, 2020) 85.20 ELR+ (Liu et al, 2020) 85.77
JNPL (Kim et al, 2021) 74.15 CoDis (Xia et al, 2023) 74.92 PLC (Zhang et al, 2021b) 85.28 WarPI (Sun et al, 2022) 85.91
NCR (Iscen et al, 2022) 74.42 VRI (Ours) 75.19 CoDis (Xia et al, 2023) 86.13 VRI (Ours) 86.24

ANIMAL-10N. For the prior and meta networks,
we select the Adam optimizer and set the learn-
ing rate as 3e-4 for all experiments. We adopt the
CosineAnnealing strategy for adjusting the learn-
ing rate of the classification network on CIFAR-10
& 100. Settings of other hyperparameters for the
classification network are listed in Tab. 2.

4.2 Comparison results

Synthetic Noise. We evaluate the model on
two basic benchmark datasets, i.e., CIFAR-10 and
CIFAR-100 of classification tasks. We study vari-
ant settings of types and ratios of label noise.
For flip & ID noise, we present results with the
setting of 20% and 40% noise ratios. For uni-
form noise, we choose a more challenging setting
of 40% and 60% ratios. For a fair comparison,
the settings of generating noisy data and net-
work architectures are consistent for all methods.
The comparison baseline methods include Base
Model that is directly trained on corrupted data,
other prevailing approaches (e. g., DivideMix (Li
et al, 2020), ELR (Liu et al, 2020), Mentor-
Net (Jiang et al, 2018), CORES* (Cheng et al,
2021), DMI-NS (Chen et al, 2021a), SFT (Wei
et al, 2022), GSS-SSL (Yu et al, 2023), PES (Bai
et al, 2021), CoDis (Xia et al, 2023), NCR (Iscen
et al, 2022), SOP (Liu et al, 2022), Late Stop-
ping (Yuan et al, 2023), PADDLES (Huang et al,
2023) and Me-Momentum (Bai and Liu, 2021)),
and meta-learning methods including MSLC (Wu
et al, 2021), MW-Net (Shu et al, 2019), PMW-
Net (Zhao et al, 2023), MLC (Wang et al, 2020)
and FaMUS (Xu et al, 2021b). Note that other
works (Li et al, 2019) with fewer fixed transition
patterns for flip noise have not been included.
To illustrate the effectiveness of variational form
of learning to rectifying loss functions, we also
compare the method with the homogeneous MC
approximation model, WarPI (Sun et al, 2022).
To further boost the performance, we adopt the

architecture of two models and ensemble them at
the testing stage, which is denoted as VRI∗.

As shown in Tab. 3, VRI outperforms SOTA
meta-learning methods on the classification task
and achieves superior performance under the set-
ting of flip noise with ResNet-32. By using boost-
ing techniques, we highlight that VRI∗ achieves
the best performance on three types noise on vari-
ant ratios. We would like to highlight that our
method gains significant improvement of 4.56%
on CIFAR-100 with 20% ID noise compared with
the SOTA method of PADDLES. Besides, VRI
consistently outperforms the homologous method
of WarPI, indicating the superiority of our varia-
tional modeling.

Real-world Noise. To evaluate the performance
on real-world noise, we conduct experiments on
two large-scale real-world datasets, i.e., Cloth-
ing1M and Food-101N, and choose the clean vali-
dation set as meta-data. For the fair comparison,
we adopt the same evaluation protocol in (Shu
et al, 2019; Zhang et al, 2021b) and use the same
backbone of ResNet-50 pre-trained on ImageNet.
We compare VRI with current SOTA methods. As
shown in Tab. 4, the proposed VRI achieves the
highest accuracy of 75.19% on Clothing1M and
86.24% on Food-101N, consistently outperform-
ing the homogeneous MC approximation method
(e.g., WarPI). VRI also gain a large improvement
of 1.4% on Clothing1M and 1.5% on Food-101N
compared with other meta-learning methods (e.g.,
MW-Net), demonstrating its great effectiveness in
real-world application.

Indeed, even for the state-of-the-art methods
(e.g., DivideMix, ELR), they inevitably involve
hyper-parameters and require a clean set (10% of
training data, 5k samples of CIFAR) for cross-
validation (CV). Our method is proposed to learn
an adaptive rectifying strategy in a data-driving
way, resolving the issue of scalability in CV.
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(a) The loss distribution of training data (b) Estimation of noise transition matrix

Fig. 4 (a) As the noise ratio increases, the effect of rectification becomes more obvious since the area of the original loss
increases. (b) We almost achieve the unbiased estimation for the initialized transition matrix of flip noise with varying noise
ratio ρ.

4.3 Further Analysis

Effectiveness. To directly visualize the effect
after rectification, we plot the distribution of
training losses for all samples in Fig. 4 (a) when
finishing the training process. The blue part repre-
sents the original loss without rectification, while
the orange is for the loss computed from the rec-
tified logits using our meta-network. As shown
in Fig. 4 (a), the rectified loss is lower than the
original one with high probability. The area of
the original loss increases as the noise ratio rises,
indicating the effect of rectification becomes more
obvious. To further illustrate its effectiveness, we
adopt the prediction from the rectified logits as
the clean label to estimate the transition matrix
for constructing flip noise. We draw the initial-
ized and estimated transition matrices for 20%,
40%, and 60% ratios on CIFAR-10 in Fig. 4 (b).
We almost achieve the unbiased estimation for the
initialized matrix.

Robustness. We evaluate the generalization
ability of VRI on more challenging conditions
with high flip noise ratios. We compare VRI
with three typical meta-learning methods, i.e.,
GLC (Hendrycks et al, 2018) of loss correc-
tion, MW-Net (Shu et al, 2019) of reweighting,
MSLC (Wu et al, 2021) of label correction. We
adopt the same backbone network of ResNet-32
and a consistent setting of 1,000 meta samples.
As shown in Fig. 5 (a), VRI can still produce
favorable results, even on the challenging condi-
tion with a far higher noise ratio. Compared with
the SOTA meta-learning methods, VRI can retain
the high accuracy of 86% on CIFAR-10 with the
setting of 70% noise ratio.

We also plot Fig. 5 (b) about the training
and meta loss to explain this phenomenon. For
other meta-learners (e. g., MW-Net), their meta-
network might have limited ability to conduct
the meta-learning process with a high ratio of
flip noise. As the noise rate exceeds 50%, the
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(a) Extreme noise ratio ρ (b) Convergence comparison with MW-Net

Fig. 5 (a) The performance of VRI and other three typical meta-learning methods as the noise ratio increases. Our method
can still produce good performance with a far higher noise ratio. (b) Our algorithm achieves a stable convergence and
displays robustness on flip noise with a high ratio (e.g., 60%).
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Fig. 6 MC method is more sensitive about the sample
number compared with our proposed VRI.

learning process in MW-Net is dominated by the
classification network, where the empirical error
decreases rapidly but the meta error still keeps
high. This renders non-convergence for optimizing
the meta-network, leading to poor generaliza-
tion performance. For MSLC, the backbone needs
warm-up with the training data, which certainly
degenerates the performance for high noise ratios.
For VRI, our meta-network is powerful enough to
rectify the training process by taking the feature
and label as input and generating an effective rec-
tifying vector, which is endowed with robustness
to flip noise with high ratios.

4.4 Ablation Study

Sampling number. The sampling number k
in Monte Carlo (MC) approximation has an

Table 5 VRI yields higher performance than MC
approximation with an efficient inference.

k Time (min./epoch) Test Acc. (%)

1 2.17 88.23
MC 3 4.32 89.45

5 7.04 89.87

VRI 1 2.20 90.20

impact on performance. We conduct experiments
on CIFAR-10 and CIFAR-100 with variant k for
two flip noise ratios. As shown in Fig. 6, the test-
ing accuracy for MC essentially turns to be higher,
then keeps stable as the sample number increases.
Despite the gain of the performance from more
samples, the training time increases linearly as
illustrated in Tab. 5. Thanks to the variational
term in VRI, we achieve higher accuracy than the
MC approximation while keeping good efficiency.

Hyper-parameter discussion. To illustrate the
sensitivity of λ, we conduct experiments on
CIFAR-10 under flip noise. As shown in Fig. 7 (a),
we obtain the best performance with λ = 0.001.
The accuracy would slightly drop as λ increases.
Indeed, we observe that the KL divergence of the
variational term usually produces a large value
at the beginning of the training, which would
lead to an unstable learning process. Therefore,
we set λ as 0.001 via cross-validation. The result
also demonstrates that we can gain considerable
improvement of the performance by introducing
the variational term.
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Fig. 7 (a) We obtain the best performance on with λ = 0.001. (b) The performance improves as the number of meta
samples increases.

Table 6 Testing Accuracy (%) on CIFAR-10 and CIFAR-100 with uniform noise (top) and flip noise (bottom) when
the accessibility of meta-data is restricted.

Dataset CIFAR-10 CIFAR-100

Noise Ratio Structure 40% 60% 40% 60% Average gap

U
n
if
o
rm

Baseline ResNet-18 68.07±1.23 53.12±3.03 51.11±0.42 30.92±0.33 26.0
VRI (-) ResNet-18 80.23±1.42 74.54±2.46 59.39±0.73 49.39±0.46 10.1
VRI (+) ResNet-18 91.24±1.42 87.45±2.16 66.39±0.44 58.60±0.56 1.0
VRI (Aug.) ResNet-18 90.78±1.56 87.98±2.12 66.78±0.68 58.79±0.76 0.8
VRI (Standard) ResNet-18 91.58±0.17 88.68±0.22 67.92±0.19 59.32±0.31 0

F
li
p

Baseline ResNet-32 76.83±0.32 70.77±2.31 50.86±0.27 43.01±1.16 18.2
VRI (-) ResNet-32 82.23±1.06 80.34±1.96 58.47±0.78 55.78±0.45 9.4
VRI (+) ResNet-32 90.88±1.16 90.36±1.84 65.47±0.81 64.36±0.55 0.8
VRI (Aug.) ResNet-32 91.11±1.12 90.34±1.87 65.67±0.98 64.24±0.56 0.5
VRI (Standard) ResNet-32 91.93±0.14 91.21±0.33 66.03±0.21 65.04±0.38 0

The cardinality of the meta set. The cardi-
nality of the meta set has an impact on the per-
formance. We set it to 1,000 for CIFAR datasets
as other meta-learning methods (e.g., MWNet,
MSLC). We also study the influence in Fig. 7
(b). The performance improves as the number of
meta samples increases, especially for flip noise.
Also, VRI can obtain considerable performance
(91.07%, CIFAR-10, flip 40%) given limited meta
samples (100). Here, the backbone is ResNet-18.

4.5 Learning without Meta-Data

To evaluate the performance of the model when
there is a lack of clean meta-data, we adopt the
sample selection strategy (Han et al, 2018b) to
select reliable samples in the corrupted training

set and treat them as pseudo meta-data. Specifi-
cally, we firstly conduct warming-up (CIFAR-10:
10 epochs. CIFAR-100: 30 epochs. ANIMAL-
10N: 100 epochs) for the classification network
to achieve the basic discrimination ability. Then,
we apply the small-loss strategy and select 1,000
samples with a higher confidence for each epochs.
Next, we train our meta-network with the selected
samples by using the proposed learning Algo-
rithm 1. The whole process can be summarized as
Algorithm 2 in the Appendix A.3.

For synthetic noise, the class distribution has
an impact on the performance. We conduct two
experiments. a) “VRI (+)”, balancing the class of
selected meta data; b) “VRI (−)”, directly using
the selected samples with the top 1,000 smallest
losses. We observe that classes of the latter are
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Table 7 Testing Accuracy (%) of VRI without given meta-data on ANIMAL-10N.

Baseline Song et al (2019) Zhang et al (2021b) Chen et al (2021b) Englesson (2021) Chen et al (2022) VRI (-) VRI (+)

79.4 81.8 83.4 84.1 84.2 84.5 81.4 85.8

extremely imbalanced. Besides, data augmenta-
tion can also relieve the class-imbalance issue. We
select all training samples with the smaller loss via
Gaussian Mixture Model clustering and use mixup
to enhance training / meta-data.

As shown in Tab. 6, the performance heavily
degenerates with imbalanced pseudo meta-data.
Besides, the meta-learning framework without
meta-data still outperforms the baseline that is
directly trained on the noisy dataset and achieves
favorable performance.

For real-world noise, VRI achieves the highest
accuracy without meta data on the ANIMAL-10N
dataset (Tab. 7). We adopt the same architecture
of VGG19 as (Song et al, 2019; Zhang et al, 2021b;
Chen et al, 2021b). To build the meta set, We
firstly train the VGG19 for 100 epochs in a stan-
dard manner. We then use this network to select
clean samples with the top 1,000 smallest empiri-
cal losses as meta data and carefully balance the
number (100) for each class. Once we split the
original training set into the noisy training set and
meta set, we meta-learn a new VGG19 network
from scratch via VRI for evaluation.

5 Conclusion

In this work, we propose variational rectification
inference (VRI) for learning with label noise to
tackle model collapse in the MC meta-learning
method. VRI is built as a hierarchical Bayes to
estimate the conditional predictive distribution
and formulated as the variational inference prob-
lem. To achieve adaptively rectifying the loss with
noisy labels, we design a meta-network, which is
endowed with the ability to exploit information
lying in the feature space. Our method can also
meta-learn the rectifying process via bi-level pro-
gramming, whose convergence can be theoretically
guaranteed. To evaluate the effectiveness of VRI,
we conduct extensive experiments on varied noise
types and achieve competitive performance on
those benchmarks. Experimental results demon-
strate that VRI outperforms the MC method
with low sampling rates, resulting in a more effi-
cient learning process and resolving the issue of

scalability in cross-validation. To further boost
our framework, we integrate the adaptive sample
strategy into VRI and obtain comparable perfor-
mance without meta data, beyond the common
setting of existing meta-learning methods.

Appendix A

A.1 Derivations of The ELBO

For a singe observation (x,y), the ELBO can be
derived from the perspective of the KL divergence
between the variational posterior qϕ(v|x,y) and
the posterior p(v|x,y):

DKL[qϕ(v|x,y)||p(v|x,y)]
= Eqϕ(v|x,y) [log qϕ(v|x,y)− log p(v|x,y)]

= Eqϕ(v|x,y)

[
log qϕ(v|x,y)− log

p(v|x,y)p(x,y)
p(x,y)

]
= log p(y|x) + Eqϕ(v|x,y)

[
log qϕ(v|x,y)

− log p(y|x,v)− log p(v|x)
]
(A1)

= log p(y|x)− Eqϕ(v|x,y) [log p(y|x,v)]
+DKL[qϕ(v|x,y)||p(v|x)]

≥ 0.

Specifically, we apply Bayes’ rule to derive Eq.
(A1) as

p(v|x,y) = p(v|x,y)p(x,y)
p(x,y)

=
p(y|x,v)p(x,v)

p(x,y)
=

p(y|x,v)p(v|x)
p(y|x)

. (A2)

Therefore, the ELBO for the log-likelihood of the
predictive distribution in Eq. (3) can be written
as follows

log p(y|x)
≥ Eqϕ(v|x,y) [log p(y|x,v)]−DKL[qϕ(v|x,y)||p(v|x))]
= LELBO. (A3)
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A.2 Proof

Lemma 1 (Smoothness)

Proof. We begin with computation of the deriva-
tion of the meta loss L̃emp(θ̂) w.r.t. the meta
network ϕ. By using Eq. (9), we have

∂Lmeta(θ̂)

∂ϕ
=

∂Lmeta(θ̂)

∂θ̂

∂θ̂

∂V (ϕ)

∂V (ϕ)

∂ϕ

= α
∂Lmeta(θ̂)

∂θ̂

(
∇θL(θ) +

∂DKL

∂V (ϕ)

)
∂V (ϕ)

∂ϕ
.

(A4)

To simplify the proof, we neglect Monte Carlo
estimation in Eq. 6 and consider it as a determin-
istic rectified vector in the following. This would
not affect the result since there ultimately exists a
rectified vector for computing the expectation of
those sampled losses. Taking the gradient of ϕ on
both side of Eq. (A4),

∂2Lmeta(θ̂)

∂ϕ2

= α
∂

∂ϕ

(
∂Lmeta(θ̂)

∂θ̂

(
∇θL(θ) +

∂DKL

∂V (ϕ)

))
∂V (ϕ)

∂ϕ︸ ︷︷ ︸
❶

+ α
∂Lmeta(θ̂)

∂θ̂

(
∇θL(θ) +

∂DKL

∂V (ϕ)

)
∂2V (ϕ)

∂ϕ2︸ ︷︷ ︸
❷

.

For the first term ❶ in the right hand, we can
obtain the following inequality w.r.t. its norm

∥❶∥ ≤ αδ

∥∥∥∥∥ ∂

∂θ̂

(
∂Lmeta(θ̂)

∂ϕ

)(
∇θL(θ) +

∂DKL

∂V (ϕ)

)∥∥∥∥∥
= α2δ

∥∥∥∥∥ ∂

∂θ̂

(
∂Lmeta(θ̂)

∂θ̂

(
∇θL(θ) +

∂DKL

∂V (ϕ)

)
∂V (ϕ)

∂ϕ

)
(
∇θL(θ) +

∂DKL

∂V (ϕ)

)∥∥∥∥∥
= α2δ

∥∥∥∥∥∂2Lmeta(θ̂)

∂θ̂2

(
∇θL(θ) +

∂DKL

∂V (ϕ)

)2
∂V (ϕ)

∂ϕ

∥∥∥∥∥
≤ ℓα2δ2(τ + o)2,

since we assume ∥∂
2Lmeta(θ̂)

∂θ̂2
∥ ≤ ℓ, ∥∇θL(θ)∥ ≤ τ ,

∥ ∂DKL

∂V (ϕ)∥ ≤ o, and ∥∂V (ϕ)
∂ϕ ∥ ≤ δ.

For the second term ❷, we can also obtain

∥❷∥ ≤ ατ(τ + o)ζ

with the assumption ∥∂
2V (ϕ)
∂ϕ2 ∥ ≤ ζ. Therefore, we

have∥∥∥∥∥∂2Lmeta(θ̂)

∂ϕ2

∥∥∥∥∥ ≤ α(τ + o)
(
ℓαδ2(τ + o) + τζ

)
.

Let ℓ̂ = α(τ + o)
(
ℓαδ2(τ + o) + τζ

)
, we can

conclude the proof that

∥Lmeta(θ̂(ϕ(t+1)))− Lmeta(θ̂(ϕ(t)))∥ ≤ ℓ̂∥ϕ(t+1) − ϕ(t)∥.

Theorem 1 (Convergence Rate)

Proof. Consider

Lmeta(θ̂(t+1)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t)))

= Lmeta(θ̂(t+1)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t+1)))︸ ︷︷ ︸
❸

+ Lmeta(θ̂(t)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t)))︸ ︷︷ ︸
❹

.

For ❸, by Lipschitz smoothness of the meta
loss function for θ, we have

Lmeta(θ̂(t+1)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t+1)))

≤ ⟨∇Lmeta(θ̂(t)(ϕ(t+1))), θ̂(t+1)(ϕ(t+1))− θ̂(t)(ϕ(t+1))⟩

+
ℓ

2
∥θ̂(t+1)(ϕ(t+1))− θ̂(t)(ϕ(t+1))∥22. (A5)

We firstly write θ̂(t+1)(ϕ(t+1)), θ̂(t)(ϕ(t+1)) with
Eq. (9). Using Eq. (12), we obtain

θ̂(t+1)(ϕ(t+1))− θ̂(t)(ϕ(t+1))

= −α∇θLemp(θ̂(t+1)(ϕ(t+1))). (A6)

and

∥Lmeta(θ̂(t+1)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t+1)))∥

≤ αtτ
2 +

ℓα2
t

2
τ2 = αtτ

2(1 +
αtℓ

2
), (A7)
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since
∥∥∥∂L(θ)

∂θ

∣∣∣
θ(t)

∥∥∥ ≤ τ ,
∥∥∥∂Lmeta

i (θ̂)

∂θ̂

∣∣∣
θ̂(t)

∥∥∥ ≤ τ , and

the output of V (·) is bounded with the sigmoid
function.

For ❹, since the gradient is computed from
a mini-batch of training data that is drawn
uniformly, we denote the bias of the stochas-

tic gradient ε(t) = ∇L̃meta
(
θ̂(t)

(
ϕ(t)

))
−

∇Lmeta
(
θ̂(t)

(
ϕ(t)

))
. We then observe its expec-

tation obeys E[ε(t)] = 0 and its variance obeys
E[∥ε(t)∥22] ≤ σ2.

By smoothness of ∇Lmeta(θ̂(t)(ϕ)) for ϕ in
Lemma 1, we have

Lmeta(θ̂(t)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t)))

≤ ⟨∇Lmeta(θ̂(t)(ϕ(t))), ϕ(t+1) − ϕ(t)⟩+ ℓ̂

2
∥ϕ(t+1) − ϕ(t)∥22

= ⟨∇Lmeta(θ̂(t)(ϕ(t))),−ηt[∇Lmeta(θ̂(t)(ϕ(t))) + ε(t)]⟩

+
ℓ̂η2t
2
∥∇Lmeta(θ̂(t)(ϕ(t))) + ε(t)∥22

= −(ηt −
ℓ̂η2t
2

)∥∇Lmeta(θ̂(t)(ϕ(t)))∥22 +
ℓ̃η2t
2
∥ε(t)∥22

− (ηt − ℓ̂η2t )⟨∇Lmeta(θ̂(t)(ϕ(t))), ε(t)⟩. (A8)

Thus far Eq.(A5) satisfies

Lmeta(θ̂(t+1)(ϕ(t+1)))− Lmeta(θ̂(t)(ϕ(t)))

≤ αtτ
2(1 +

αtℓ

2
)− (ηt −

ℓ̂η2t
2

)∥∇Lmeta(θ̂(t)(ϕ(t)))∥22

+
ℓ̂η2t
2
∥ε(t)∥22 − (ηt − ℓ̂η2t )⟨∇Lmeta(θ̂(t)(ϕ(t))), ε(t)⟩.

(A9)

We take the expectation w.r.t. ε(t) over Eq.
(A9) and sum up T inequalities. By the property
of the bias ε(t), we can obtain

T∑
t=1

(
E
ε(t)

Lmeta(θ̂(t+1)(ϕ(t+1)))− E
ε(t)

Lmeta(θ̂(t)(ϕ(t)))

)

≤ τ2
T∑

t=1

αt(1 +
αtℓ

2
)

−
T∑

t=1

(ηt −
ℓ̂η2t
2

) E
ε(t)

[
∥∇Lmeta(θ̂(t)(ϕ(t)))∥22

]
+

ℓ̂σ2

2

T∑
t=1

η2t .

Taking the total expectation and reordering the
terms, we have

1

T

T∑
t=1

(ηt −
ℓ̂η2t
2

)E
[
∥∇Lmeta(θ̂(t)(ϕ(t)))∥22

]

≤
Lmeta(θ̂(0)(ϕ(0)))− E

[
Lmeta(θ̂(T+1)(ϕ(T+1)))

]
T

+
τ2

T

T∑
t=1

αt(1 +
αtℓ

2
) +

ℓ̂σ2

2T

T∑
t=1

η2t . (A10)

Let E = Lmeta(θ̂(0)(ϕ(0))) −
E
[
Lmeta(θ̂(T+1)(ϕ(T+1)))

]
. With the assumption

of ηt = min{ 1
ℓ̂
, C
σ
√
T
} and αt = min{1, κ

T }, we

have ηt − ℓ̂η2
t

2 ≥ ηt − ηt

2 = ηt

2 and

1

T

T∑
t=1

E
[
∥∇Lmeta(θ̂(t)(ϕ(t)))∥22

]
≤ 2E

Tη1
+

(2 + ℓ)τ2α1

η1
+ ℓ̂σ2η1

=
2E

T
max{ℓ̂, σ

√
T

C
}+ (2 + ℓ)τ2 min{1, κ

T
}max{ℓ̂, σ

√
T

C
}

+ ℓ̂σ2 min{1
ℓ̂
,

C

σ
√
T
}

≤ 2σE

C
√
T

+
(2 + ℓ)τ2κσ

C
√
T

+
Cℓ̂σ2

σ
√
T

= O(
1√
T
).

Thus, we conclude our proof.

A.3 Algorithm for VRI without
the meta set
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Algorithm 2 Learning without meta data

Require: Training set DN , number of meta sam-
ples M , batch size n,m, outer iterations T for
each epoch, sampling number k, step size α, η,
warming-up epoch K, training epoch C

Ensure: Optimal θ∗

1: Initialize parameters θ(0), ϕ(0), and ω(0)

2: Warm up parameters θ for K epochs
3: for c ∈ {1, . . . , C} do
4: DM = SelectWithBalance(DN ,M)
5: for t ∈ {1, . . . , T} do
6: SampleBatch(DN , n), SampleBatch(DM ,m)

7: Form learning process of θ̂(t)(ϕ, ω)

8: Optimize ϕ(t) with θ̂(t)(ϕ)

9: Optimize ω(t) with θ̂(t)(ω)

10: Optimize θ(t) using the updated ϕ(t+1)

11: end for
12: end for

• Code availability The code is now available
at https://github.com/haolsun/VRI.
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